
July 3 to 11 2010 ~ Tampere, Finland

The 7 principles of successful open source communities
Thomas Thym

Institute for the development of viable organizations
Universität der Bundeswehr München

Werner-Heisenberg-Weg 39
DE-85577 Neubiberg

thomas.thym@gmail.com

ABSTRACT
This paper presents the seven fundamental principles of
successful open source communities, and drafts some
consequences for communities and classical organizations.

Author Keywords
Open Source, Communities, Principles

ACM Classification Keywords
A.0 [General]: Conference proceedings

INTRODUCTION
According to the classical management theories, open
source software, built in unmanaged and unpaid
communities, should not exist. However, this successful
phenomenon that is way beyond a group of hobby
developers does exist and has built a growing economic
system around the open source movement. There must be
other reasons than money and formal orders which are
responsible for the creation of those open source
communities.

What is fascinating?

EFFECTS
The interesting effects could be grouped into two
categories:

1. Open source Effects and

2. Community effects

Open source effects

New business models
Open / free software licenses and open standards are the
basis for a new form of cooperation between business
partners e. g. joint development or open innovation (e. g.
the printer software CUPS).

Revenues are not created from licenses but from additional
services around the software (e. g. consulting (KDAB),
software modification or hardware sales (e. g. IBM), dual
licensing (e. g. former Trolltech and MySQL).[1]

New forms of value creation
Apart from new commercial models, many non-commercial
forms of value creation exists. The aim of the cooperation is
not earning money but creating direct value by sharing and

collaborating. Famous examples are the free encyclopedia
Wikipedia[2], OpenStreetMap[3] or the free audio books
service LibriVox[4].

New market entering strategy
The third open source effect opens the possibility to enter a
market even without much financial resources or against
strong competitors (even monopolies). Examples here are
Netscape / Mozilla's web-browser (Firefox) against
Microsoft's Internet Explorer [5] or Brewtopia, a start-up
brewery in Australia resetting the competition against the
three dominating players.[6] New forms of marketing, like
viral marketing, are part of that category.

Open source effects are typically based on open licenses
and provide strategic advantages.

Community effects
The second group is community effects. These are the
phenomenons Linus Torvalds activated with his shift from
the cathedral to the bazaar-style development model.[7]

Community effects offer a new form of collaboration and a
new way of handling complexity by using self-
organization and collective intelligence. These new
methods support the integration of masses, reduce reaction-
time of the whole organization and allow rapid growth
without central control.

Impressive is the fascination and passion that is created by
the communities leading to overwhelming commitment
without extrinsic motivation (like money).

How are the communities creating these magnificent
effects?

ANALYTICAL FRAMEWORK
The open source phenomenons exist because humans in
particular communities are collaborating in a special way.
The individual actions are forming typical processes.
Without these essential processes the favored effects would
not exist.

Why do people act as they do?

Several studies are trying to explain that question with
classical motivation theories. These causally determined
models follow the pattern: “Developer A is motivated by
X.” The consequences would be that managers just have to

1

Akademy 2010 ~ Technical Papers

motivate their subordinates with X to create open source
effects.

To look behind the effects, a social psychological model
from Kurt Lewin was enhanced.[8]

Lee Ross and Steven Samuels analyzed the behavior of
cooperation and cheating.[9] In the first step the
personalities of students (whether or not they would cheat
or cooperate) were ranked by their tutors. The students then
played a prisoner's game.[10] The study showed that the
correlation of cheating does not depend on the (assumed)
personalities but on the naming of the game. When the
game was called “community game” about 70%
cooperated. In the “wall street game” only 33% did not
cheat (independent of the assumed personality).

The rules of the games were identical. This experiment
shows the power of a little detail of the situation (the
context).

On the other hand the behavior depends on the person.
Different people react differently in the same situation.

The behavior is influenced by

• the character of the person,

• the individual needs,

• the skills,

• the experience and

• the basic assumptions (the view of the world).

Summarized: The behavior of a person depends on the
personality itself and the context of the situation.

Before the effect building processes could be outlined, the
personalities and the context of open source communities
will be analyzed.

Who is contributing?

PERSONALITIES
A couple of detailed studies examined the characteristics of
open source developers. [11]

Statistic characteristics
The major part of open source developers are male (>95%
in most communities) and are younger than 30 years old
(70%). They live all over the world but most of them come
from developed western countries (especially from Europe
and Northern America).

In the last years the proportion of paid contributors rose.
Still for half of the developers open source activity is just a
hobby. Most of the work although is accomplished by the
paid community members.

Characters
Krogh, Spaeth and Lakhani analyzed the characters of
potential new contributors in mailing lists.[12] Based on
that work three types could be found.

• Proactive problem-solver: They use the program,
find a bug, and work out the solution. In the first
mail to the list they send the patch. These people
are very successful in communities and often
become continuous contributors.

• Waiting volunteer: This group offers their
abilities to the community and waits until they get
a job allocated. In general this character is not very
active. Most communities can not integrate them
successfully.

• Visionary: They use the program and have ideas
on how the program should be improved.
Although visions and aims are important in
communities, the character-type visionary is not
successful. In the past his/her visions were not
identical with the ideas of the code developers.
The resulting costs of conflicts exceed the benefits
of the discussion.

An analysis of a few famous open source contributors
draws a first picture of the character of a successful open
source developer.

The typical open source contributor is

• passionate,

• searching for challenges,

• curious, and enthusiastic about technology,

• oriented on technical arguments not on the origin
(person) of the argument and,

• humble, with no ambition to assert oneself.

Skills
Developers need special knowledge and skills to be able to
contribute. In addition to technical knowledge, (e. g. the
ability to code) social skills (like respectful
communication) play an important part. Especially in a
situation of disagreement constructive feedback is essential
to keep the community healthy while finding the best
technical solution.

All successful contributors share the ability to learn
autonomously.

CONTEXT
The context consists of other protagonists and their
interactions. Not only is the behavior of others important
for the decision but also their expected reaction. The
behavior depends again on the personality and the context.

2

July 3 to 11 2010 ~ Tampere, Finland

Major components of the context are the premises (basic
assumptions) of that group (e. g. found in the organizational
culture). The basic assumptions include a common
understanding about core values and processes (how things
should be done).

Culture
Open source / free software exists as long as computers
exist. Universities and other research facilities developed
the first computers and the software to run those machines.
In this scientific culture it was obvious to share knowledge,
(including the source code of the software) and build upon
these findings. The traditional values of that environment
(freedom, growing knowledge and fun) resemble persisting
core values of open source communities today.

Values
In detail these values could be found in the code of conduct
or social contract of several projects.[13] The documents
were created by the members of the community. Corporate
values in enterprises are often defined by the top
management and are not completely accepted by the
employees.

Values may differ from one community to another. The
following points could regularly be found:

• Respectful and open communication

• Sharing and modification (sharing spirit)

• Pragmatic coding (“just code”)

• Collaboration (Think of others and maximize the
success of the project, not yours)

• Freedom (self-determination and responsibility)

Leadership
There are hierarchies in communities. The position depends
on the achievement of that person. In contrary to many
classical organizations the level of hierarchy is not based on
the accomplishment for his superiors but for his followers.

Leaders are measured by their actions, not their words.
They lead by doing the first work and offer help to those
who want to follow. The philosophy could be described as
“making things possible for the followers” and “challenge
them from time to time”. Community members don't want
to be pushed, but guided!

How do open source communities work?

THE 7 PRINCIPLES
Open source contributors with particular characters and
skills create open source and community effects in the
special context. These effects are provoked by characteristic
processes. All processes subject the seven principles of
open source communities.

Openness
The core of an open source project is the code and the open
(or free) license of that code. The license allows the user to
run, copy, distribute, study, change and improve the
software.

Furthermore, structure and processes of communities are
open. There are no boundaries between users, developers
and project-manager. It could be difficult to decide how big
a community is because it is not clear who is a member and
who is not. The definition when a user becomes a
community member is blurry.

In general, communities welcome new members. Everyone
who would like to participate is invited to join the team.
The core team grants unrestricted access to their
information and provides transparent communication
(almost all mailing lists, code repositories, documents etc
could be accessed by anyone).

Scalability
Big open source communities are successful because they
are highly scalable.

The size of a central controlled organization is limited by
the ability of the leader. The bigger the organization gets,
the higher the workload gets and decisions for the central
leader become more complex.

Self-organized and decentralized systems do not suffer
that limitation. They can grow continuously. At a certain
size they just split into autonomous sub-projects.

The sub-projects (the code as well as the teams) are
modular. The development of one module does not effect
the other autonomous parts. This modularity allows
simultaneous engineering.

In most open source environments there are several
modules for similar purposes. One the one hand, this
redundancy is inefficient. On the other hand, this diversity
increases stability and quality of the whole system. If one
module fails, another could be used. An environment which
allows riskless experiments is the basis for evolution.

Circular feedback
Developers and users share their thoughts, comments and
evaluations with each other (peer review). The feedback
process is the basis of learning and pushes the quality to the
next level as long as the feedback was given in a
professional way (respectful and constructive), and was
accepted by the counterpart. The best feedback is not worth
anything if no one learns from it, and does not change
his/her behavior.

Pragmatism
The philosophy of experimenting could also be found in the
way of production: Rapid prototyping.

3

Akademy 2010 ~ Technical Papers

Most developers favor a pragmatic and simple approach.
The advice for new contributors often is not to develop
detailed concepts, but to start coding. The real problems
reveal themselves during the programming, not the concept
phase.

Instead of developing perfect applications, they further
suggest to release a prototype in an early stage (release
early) and provide updates in short periods of time (release
often).

This method uses the knowledge and skills of the whole
group most successfully (use of collective intelligence).

Social interaction
Another important point way beyond technical processes
are social relations between the community members. In
addition to technical knowledge and ideas, many
contributors share personal information (e. g. on their blogs,
micro-blogs, conferences or developer sprints).

On the first glance social interaction seems to be inefficient
too. In the long run the advantages weigh more. Personal
relationships bind the groups together, and belonging to a
group has a significant impact on the behavior of a human
and helps to solve problems in conflicts.[14]

Communities demonstrate the success of the recovery of
humanity in productive environments (in contrary to short
term thinking or shareholder value orientation).

Communities are about people. Great software code is the
result of a great community.

Freedom
Open source software is not possible without freedom. In
this case the focus is not on the freedom of the source code
(therefore see “openness”) but on the freedom of choice.
The freedom of personal decisions includes the choice
about the tasks, the preferred solution for a problem, the
invested time, the colleagues, the leader etc.

There are no formal orders from superiors what to do, how
to do it, and when. Even when there are hierarchies in
projects, the final decision (e. g. in conflict situations) is up
to those who actually do the work, not the project-leaders.
To force one's opinion or code down to anyone will fail.

The contributors decide by themselves. They chose which
information they want to get. They subscribe to the media
(mailing list, bog etc.) they think might be interesting for
them. They get the information they want (pull
communication). In classical organizations the superiors
decide which information is important for the employees
and will push it to them (if they like it or not).

Communities put freedom into practice and cultivate a
consequent form of self-determination. Without self-
determination open source projects would not be self-
organized and scalable.

However, with great freedom (self-determination) comes
great responsibility. (Otherwise the projects would fall
apart.)

Developers take the consequences of their own actions for
others into account. They think outside their own modules
and take care of the interoperability of the whole project.

New contributors try to solve the problem on their own in
the first place. They learn by themselves, read
documentations, search the web, and experiment. Only the
last step involves consulting with others about their
problem.

Personal relevance
Open source contributors are doing things they care about.
They love what they do but more importantly: they do what
they love. They don't contribute (at least in the first place)
to earn money. They live their passions.

Communities are built around the same personal needs,
problems, interests, challenges, values and passion.

It is quite impossible to grow passion in an environment of
pressure and fear or in a context where the employee thinks
her/his commitment only increases the bonus of somebody
else, or a shareholder's value. A passionate, supportive,
positive, and fearless context is needed.

These seven principles shape the processes in open source
communities. The processes are highly supported by
software tools (wikis, source repositories, mailing lists,
blogs, instant messaging, micro-blogging etc.).

The developers have the ability to modify the tools to their
particular needs if necessary. Again they have the freedom
to decide.

Why are the communities successful?

SUMMARY
Communities are successful because they follow the seven
principles. Not only are the processes shaped by the
principles, but the personalities (characters, values) and
context (culture, common values, expectations) reflect them
as well. All elements pull into the same direction, and
follow one aim.

• Openness

• Scalability

• Circular feedback

• Pragmatism

• Social interaction

• Freedom

• Personal relevance

4

July 3 to 11 2010 ~ Tampere, Finland

What consequences follow for communities and other
organizations?

CONSEQUENCES
Open source effects could be enhanced by improving or
introducing the open source principles in the areas of
processes, personalities and context. Processes depend on
the acting personalities in a specific context. Consequently
personalities or context could be modified to boost open
source effects.

It is very difficult (or rather impossible) to change
personalities (beyond technical training). The more
promising option is to change context. Every person is an
actor in his/her particular environment. That is to say that
everybody can change context very easily.

Unfortunately there is no causality while dealing with
humans. It is not possible to predict the exact behavior of a
person. Therefore it is impossible to draw one foolproof
instruction. The success of an intervention depends on too
many factors.

The recommended suggestion is to experiment. Trial and
error offer the possibility to learn about the context.
Experiments have (by definition) no certain outcome. They
might and they certainly will fail.

The important point is to learn from failures, to change the
experiment, to adjust it to the unique situation and to try
again.

There are boundless possible experiments. Here is just one
simple example:[15]

Spread your idea and grow your community

Personal relevance
People have different problems, experiences, needs etc. It
might occur that issues that are important to one person are
irrelevant to another. So make sure that your idea is
fascinating for the target group.

Business persons might not be convinced to use open
source software by ideological arguments of freedom of
speech. They have other values and expectations. They
might listen when they hear that they could solve their
problems easier, faster, and cheaper than before.

Do not tell them what is interesting for you, tell them what
is fascinating for them!

Pragmatism
Draft a version and create a simple prototype that works, e.
g. a concept how to spread the idea, information brochures,
basic presentations etc.

Make it simple and easy to participate.

Openness
Release it under an open license and allow anyone to
improve it (e. g. on a Wiki). Invite others to participate.
(Remember the personal relevance.) Provide open and
transparent communication. Judge the quality of the
content, not the person.

Scalability
Don't lead the project. If someone steps up and wants to
take responsibility for a part (module) be happy that he/she
is following and support him/her.

Freedom
Provide the freedom of decision wherever possible. Support
decentralization to make the project scalable.

Social interaction
Additionally, to technical communication also support
social interaction. Know your fellows, know their needs and
ambitions. Integrate them, show them that they belong to
the community and that you care about them. Especially
think about the “waiting volunteers”. They need another
context than the usual “proactive problem-solver”.

Define your common goal and your values together and pay
attention that you (and everyone else) follows them.
Otherwise kindly remind them and let them remind you.
Mentoring social skills (in addition to technical mentoring)
is an excellent way to insure a healthy community.

And last but not least: Have fun! Only very few people like
to spend their leisure time in a boring or frightening
environment.

Circular feedback
Kindly ask for feedback from fellow community members
as well as from the target group. Structure the discussions
and make sure it leads to a concrete result.

Create a trustworthy context by making clear that you are
interested in his/her opinion and really want to improve
your work. Optimize the quality of the product and support
individual learning as well as learning as a group (e. g. ask
directly what everyone has learned in the discussion).

Keep in mind: Whatever your partner says, it is her/his
truth, based on his assumptions, on her experiences etc.
This external view is extremely valuable even if you think it
is offending you.

Often, the first thought in conflict situations is that the other
person is wrong and therefore should change the behavior.
The funny thing is: Your discussion partner thinks the same
of you. Instead of trying to force others it is more effective
to modify the context – and that means to change oneself.

It is tremendous difficult to mistrust your own senses, your
experiences, your values, your picture of the world, and
your perfect solution to the problem you are all facing. It is

5

Akademy 2010 ~ Technical Papers

so hard to believe that you are wrong. But in fact, you
sometimes are.

So be open minded and try to think (at least for one second)
that this time the other person might be right. Perhaps
she/he is.

These are just proposals for one experiment. Play with that
idea, extend it, evaluate if it works for you and your
situation and if necessary, adapt it.

CONCLUSION
Particular processes built by individual action creates open
source and community effects. The behavior of a person
depends on the personality and the surrounding context of
the situation.

The underestimated importance of context and
personalities, is the reason why many attempts to introduce
open source effects in organizations fail. Installing a Wiki
on a company server may provide the tool for collaboration
but not the necessary context.

In the undetermined world of human interaction trial and
error provides a way to learn and influence context. The
experiments should incorporate the seven principles of
successful open source communities in all their areas.

The heart of an open source project is the community. The
prosperity correlates with the ability of the members to
form a passionate, respectful, healthy and focused
community.

Create a great community and
 great results will follow.[16]

REFERENCES
1. Glyn Moody, Rebel code: Linux and the open source

revolution, 2001, p. 205.

2. Wikipedia, Wikipedia, the free encyclopedia, 2007,
http://www.wikipedia.org.

3. OpenStreetMap, OpenStreetMap, 2009,
http://www.openstreetmap.org.

4. LibriVox, LibriVox - Acoustical liberation of books in
the public domain, 2009, http://librivox.org.

5. Joseph Feller and Brian Fitzgerald, Understanding
Open Source Software Development, 2002.

6. Brewtopia, What is Brewtopia?, 2010,
http://brewtopia.com.au/about-brewtopia.php.

7. Varda Liberman, Steven M. Samuels, and Lee Ross,
The Name of the Game: Predictive Power of
Reputations versus Situational Labels in Determining
Prisoner's Dilemma Game Moves, 2004,
http://psp.sagepub.com/cgi/content/abstract/30/9/1175.

8. Eric S. Raymond, The cathedral and the bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary, 2001.

9. Wikipedia, Prisoner's dilemma, 2010,
http://en.wikipedia.org/wiki/Prisoner%27s_dilemma.

10. Kurt Lewin, Feldtheorie, 1982, p. 196ff.

11. Rishab Aiyer Ghosh and Vipul Ved Prakash, The
Orbiten Free Software Survey, 2000,
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/769/678,

Gregorio Robles, Hendrik Scheider, Ingo Tretkowski
and Niel Weber, Who is doing it?: A research on Libre
Software developers, 2001,
http://widi.berlios.de/paper/study.pdf,

Alexander Hars and Shaosong Ou, Working for Free?
Motivations for Participating in Open-Source Project,
2002, http://search.ebscohost.com/login.aspx?
direct=true&db=epref&AN=IJEC.F.BE.HARS.WFMP
OP,

Rishab Aiyer Ghosh, Understanding Free Software
Developers: Findings from the FLOSS Study, 2005,
http://mitpress.mit.edu/catalog/item/default.asp?
ttype=2&tid=11216&mode=toc and

Karim R. Lakhani and Robert G. Wolf, Why Hackers
do what they do: Understanding Motivation and Effort
in Free/Open Source Software Projects, 2005.

12. Georg von Krogh and Sebastian Spaeth and Karim R.
Lakhani, Community, joining, and specialization in
open source software innovation: a case study, 2003,
http://www.sciencedirect.com/science/article/B6V77-
48WB8M0-1/2/92b48386d215bdf3884018f4f6172043.

13. E. g. the Code of Conduct from the KDE community:
KDE, KDE Community Code of Conduct, 2010,
http://kde.org/code-of-conduct.

14. Elliot Aronson and Timothy D. Wilson and Robin M.
Akert, Sozialpsychologie, 2004 and

Günther Bierbrauer, Sozialpsychologie, 2005.

15. These experiments are for the reader. Therefore the
style of writing of the next paragraphs will address the
reader directly (“you”-form) instead of the more
scientific third person.

16. In accordance with Angela Byrons' quote „Create a
great community and great code will follow.“
Angela Byron, Lessons on Community Management
from the Open Source World, 2009,
http://www.osbr.ca/ojs/index.php/osbr/article/view/890/
860.

6

http://www.wikipedia.org/
http://www.osbr.ca/ojs/index.php/osbr/article/view/890/860
http://www.osbr.ca/ojs/index.php/osbr/article/view/890/860
http://kde.org/code-of-conduct
http://www.sciencedirect.com/science/article/B6V77-48WB8M0-1/2/92b48386d215bdf3884018f4f6172043
http://www.sciencedirect.com/science/article/B6V77-48WB8M0-1/2/92b48386d215bdf3884018f4f6172043
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11216&mode=toc
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11216&mode=toc
http://search.ebscohost.com/login.aspx?direct=true&db=epref&AN=IJEC.F.BE.HARS.WFMPOP
http://search.ebscohost.com/login.aspx?direct=true&db=epref&AN=IJEC.F.BE.HARS.WFMPOP
http://search.ebscohost.com/login.aspx?direct=true&db=epref&AN=IJEC.F.BE.HARS.WFMPOP
http://widi.berlios.de/paper/study.pdf
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/769/678
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/769/678
http://en.wikipedia.org/wiki/Prisoner's_dilemma
http://psp.sagepub.com/cgi/content/abstract/30/9/1175
http://brewtopia.com.au/about-brewtopia.php
http://librivox.org/
http://www.openstreetmap.org/

